Multidimensional linear cryptanalysis
نویسنده
چکیده
Linear cryptanalysis is an important tool for studying the security of symmetric ciphers. In 1993 Matsui proposed two algorithms, called Algorithm 1 and Algorithm 2, for recovering information about the secret key of a block cipher. The algorithms exploit a biased probabilistic relation between the input and output of the cipher. This relation is called the (onedimensional) linear approximation of the cipher. Mathematically, the problem of key recovery is a binary hypothesis testing problem that can be solved with appropriate statistical tools. The same mathematical tools can be used for realising a distinguishing attack against a stream cipher. The distinguisher outputs whether the given sequence of keystream bits is derived from a cipher or a random source. Sometimes, it is even possible to recover a part of the initial state of the LFSR used in a key stream generator. Several authors considered using many one-dimensional linear approximations simultaneously in a key recovery attack and various solutions have been proposed. In this thesis a unified methodology for using multiple linear approximations in distinguishing and key recovery attacks is presented. This methodology, which we call multidimensional linear cryptanalysis, allows removing unnecessary and restrictive assumptions. We model the key recovery problems mathematically as hypothesis testing problems and show how to use standard statistical tools for solving them. We also show how the data complexity of linear cryptanalysis on stream ciphers and block ciphers can be reduced by using multiple approximations. We use well-known mathematical theory for comparing different statistical methods for solving the key recovery problems. We also test the theory in practice with reduced round Serpent. Based on our results, we give recommendations on how multidimensional linear cryptanalysis should be used.
منابع مشابه
Multidimensional Linear Cryptanalysis of Reduced Round Serpent
Various authors have previously presented di erent approaches how to exploit multiple linear approximations to enhance linear cryptanalysis. In this paper we present a new truly multidimensional approach to generalise Matsui’s Algorithm 1. We derive the statistical framework for it and show how to calculate multidimensional probability distributions based on correlations of onedimensional linea...
متن کاملLinear Cryptanalysis Using Multiple Linear Approximations
In this article, the theory of multidimensional linear attacks on block ciphers is developed and the basic attack algorithms and their complexity estimates are presented. As an application the multidimensional linear distinguisher derived by Cho for the block cipher PRESENT is discussed in detail.
متن کاملProtecting Against Multidimensional Linear and Truncated Differential Cryptanalysis by Decorrelation
The decorrelation theory provides a different point of view on the security of block cipher primitives. Results on some statistical attacks obtained in this context can support or provide new insight on the security of symmetric cryptographic primitives. In this paper, we study, for the first time, the multidimensional linear attacks as well as the truncated differential attacks in this context...
متن کاملJoint Data and Key Distribution of the Linear Cryptanalysis Test Statistic and Its Impact to Data Complexity Estimates of Multiple/Multidimensional Linear and Truncated Differential Attacks
The power of a statistical attack is inversely proportional to the number of plaintexts necessary to recover information on the encryption key. By analyzing the distribution of the random variables involved in the attack, cryptographers aim to provide a good estimate of the data complexity of such an attack. In this paper, we analyze the hypotheses made in simple, multiple, and multidimensional...
متن کاملImproving the Algorithm 2 in Multidimensional Linear Cryptanalysis
In FSE’09 Hermelin et al. introduced the Algorithm 2 of multidimensional linear cryptanalysis. If this algorithm is m-dimensional and reveals l bits of the last round key with N plaintext-ciphertext pairs, then its time complexity is O(mN2l). In this paper, we show that by applying the Fast Fourier Transform and Fast Walsh Hadamard Transform to the Algorithm 2 of multidimensional linear cryptan...
متن کاملIntegral and Multidimensional Linear Distinguishers with Correlation Zero
Zero-correlation cryptanalysis uses linear approximations holding with probability exactly 1/2. In this paper, we reveal fundamental links of zero-correlation distinguishers to integral distinguishers and multidimensional linear distinguishers. We show that an integral implies zero-correlation linear approximations and that a zero-correlation linear distinguisher is actually a special case of m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010